skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Truchon, Alexander_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aureococcus anophagefferens forms a model host-virus system with the “giant virus” Kratosvirus quantuckense. Studies to define its ribocell (uninfected) and virocell (virus-infected) forms are needed as these states co-occur during algal blooms. Previously, a link between light-derived energy, virus particle production, and virocell formation was noted. We explored how the time of day (morning, midday, or late day) of virus-host contact shaped virocell ontogeny. In parallel, we explored the dependence on light-derived energy in this mixotrophic plankter by inhibiting photosystem II, testing the role of heterotrophic energy in infection dynamics. Using flow cytometry and photochemical assessments, we examined the physiology of infected cells and controls, and estimated virus particle production. We observed differences between ribocell and virocell response to treatments, including reductions in virus particle production during reduced light duration) and PSII inhibition (i.e. “forced heterotrophy”). This work demonstrates the importance of light in shaping the fate of infected cells and provides insight into factors that constrain in situ blooms. Most significantly, we show that time of the solar day when a virus and host come into contact influences viral particle production, and therefore bloom dynamics; a factor that needs to be considered in bloom modeling work. 
    more » « less
  2. Abstract The rediscovery of diatom blooms embedded within and beneath the Lake Erie ice cover (2007–2012) ignited interest in psychrophilic adaptations and winter limnology. Subsequent studies determined the vital role ice plays in winter diatom ecophysiology as diatoms partition to the underside of ice, thereby fixing their location within the photic zone. Yet, climate change has led to widespread ice decline across the Great Lakes, with Lake Erie presenting a nearly “ice-free” state in several recent winters. It has been hypothesized that the resultant turbid, isothermal water column induces light limitation amongst winter diatoms and thus serves as a competitive disadvantage. To investigate this hypothesis, we conducted a physiochemical and metatranscriptomic survey that spanned spatial, temporal, and climatic gradients of the winter Lake Erie water column (2019–2020). Our results suggest that ice-free conditions decreased planktonic diatom bloom magnitude and altered diatom community composition. Diatoms increased their expression of various photosynthetic genes and iron transporters, which suggests that the diatoms are attempting to increase their quantity of photosystems and light-harvesting components (a well-defined indicator of light limitation). We identified two gene families which serve to increase diatom fitness in the turbid ice-free water column: proton-pumping rhodopsins (a potential second means of light-driven energy acquisition) and fasciclins (a means to “raft” together to increase buoyancy and co-locate to the surface to optimize light acquisition). With large-scale climatic changes already underway, our observations provide insight into how diatoms respond to the dynamic ice conditions of today and shed light on how they will fare in a climatically altered tomorrow. 
    more » « less